Kamis, 10 Juli 2014

SENSOR RTD ( Resistance Thermal Detector



SENSOR RTD

( Resistance Thermal Detector )

Resistance Thermal Detector (RTD) atau dikenal dengan Detektor Temperatur Tahanan adalah sebuah alat yang digunakan untuk menentukan nilai atau besaran suatu temperatur/suhu dengan menggunakan elemen sensitif dari kawat platina, tembaga, atau nikel murni, yang memberikan nilai tahanan yang terbatas untuk masing-masing temperatur di dalam kisaran suhunya. Semakin panas benda tersebut, semakin besar atau semakin tinggi nilai tahanan listriknya, begitu juga sebaliknya. merupakan tipe RTD yang paling populer yang digunakan di industri. Perhitungan RTD dapat dicatat dari nilai tipical dari perubahan kecil yang linier dalam tahanan dengan suhu. Secara umum, RTD mempunyai tanggapan waktu dari 0.5 detik sampai 5 detik atau lebih. Lambatnya respon dikarenakan lambatnya konduktivitas panas yang membawa perangkat ke keseimbangan panas dengan lingkungannya. Sebuah RTD digambarkan seperti sebuah kawat yang resistansinya dimonitor sebagai fungsi suhu. Konstruksi ini mirip dengan gulungan kawat atau potongan kawat untuk mencapai ukuran kecil dan meningkatkan konduktivitas panas untuk mengurangi tanggapan waktu. Konsep utama dari yang mendasari pengukuran suhu dengan detektor suhu tahanan (RTD) adalah tahanan listrik dari logam yang bervariasi sebanding dengan suhu. Keseimbangan variasi ini presisi dan dapat diulang lagi sehingga memungkinkan pengukuran suhu yang konsisten melalui pendeteksian tahanan. Bahan yang paling sering digunakan untuk RTD adalah Platina, karena kelinearan, stabilitas, dan reproduksibilitas. RTD ini termasuk ke dalam transducer aktif. Dimana transducer aktif adalah transducer yang bekerja tanpa tambahan energi dari luar, tetapi menggunakan energi yang akan diubah itu sendiri. Prinsip kerja dari RTD ini adalah perubahan nilai tahanan kawat akibat perubahan temperatur.

Resistance Thermal Detector merupakan sensor pasif, karena sensor ini membutuhkan energi dari luar. Elemen yang umum digunakan pada tahanan resistansi adalah kawat nikel, tembaga, dan platina murni yang dipasang dalam sebuah tabung guna untuk memproteksi terhadap kerusakan mekanis. Resistance Temperature Detector digunakan pada kisaran suhu -200 0C sampai dengan 650 0C.

Konstruksi RTD

Dalam proses penurunan suhu minyak ini digunakan air sebagai pendingin. Air pendingin ini berasal dari cooling tower (dengan suhu 28-30 0C) dan dari mesin water chiller (dengan suhu 7-10 0C). RTD dipasang pada tangki rystalizer (untuk mengawasi penurunan suhu dari minyak) dan dipasang pada saluran pipa masukan air pendingin ke dalam tangki crystalizer (untuk mengatur debit air dan perubahan penggu naan air cooling menjadi air chilling).

Prinsip kerja dari RTD yang digunakan untuk pengukuranminyak ini adalah, ketika RTD pada tangki crystalizer menerima panas dari minyak, maka panas tersebut akan dikonversikan oleh RTD ke dalam bentuk besaran listrik yaitu tahanan. Panas yang dihasilkan berbanding lurus dengan tahanan dari jenis elemen logam platina yang ada pada sensor RTD, kemudian bentuk tahanan tersebut diterima oleh Tranduser kemudian tranduser merubahnya menjadi sinyal fisi dan mengirimnya ke TRC.



Grafik perbandingan resistansi dengan temperatur untuk variasi RTD metal


Kelebihan dan Kekurangan dari RTD
Dalam penggunaannya, RTD juga memiliki kelebihan dan kekurangan.

Keunggulan yang dimiliki RTD, antara lain :
  1. Stabil dan akurasi baik
  2. Linearisasi lebih baik dari pada thermocouple
  3. Tidak diperlukan suhu referensi
  4. Sensitivitasnya cukup tinggi
  5. Tegangan output yang dihasilkan 500 kali lebih besar dari thermocouple.
Sedangkan kekurangannya terdiri dari :
  1. Biaya lebih mahal
  2. Waktu respon kurang cepat pada beberapa aplikasi
  3. Membutuhkan sumber arus
  4. Pemanasan sendiri

Keunggulan RTD dibanding termokopel diantaranya adalah :
Tidak diperlukan suhu referensi Sensitivitasnya cukup tinggi, yaitu dapat dilakukan dengan cara mem-perpanjang kawat yang digunakan dan memperbesar tegangan eksitasi. Tegangan output yang dihasilkan 500 kali lebih besar dari termokopel Dapat digunakan kawat penghantar yang lebih panjang karena noise tidak jadi masalah Tegangan keluaran yang tinggi, maka bagian elektronik pengolah sinyal menjadi sederhana dan murah.

Tipe dari Platinum Resistance Temperature Detector





SENSOR TERMOKOPEL



SENSOR TERMOKOPEL

TERMOKOPEL  adalah sensor suhu yang banyak digunakan untuk mengubah perbedaan suhu dalam benda menjadi perubahan tegangan listrik (voltase). Termokopel yang sederhana dapat dipasang, dan memiliki jenis konektor standar yang sama, serta dapat mengukur temperatur dalam jangkauansuhu yang cukup besar dengan batas kesalahan pengukuran kurang dari 1 °C.

Tipe-Tipe Termokopel
Tersedia beberapa jenis termokopel, tergantung aplikasi penggunaannya 
Tipe K (Chromel (Ni-Cr alloy) / Alumel (Ni-Al alloy))
Termokopel untuk tujuan umum. Lebih murah. Tersedia untuk rentang suhu 200 °C hingga +1200 °C.

2     Tipe E (Chromel / Constantan (Cu-Ni alloy))
Tipe E memiliki output yang besar (68 µV/°C) membuatnya cocok digunakan pada temperatur rendah. Properti lainnya tipe E adalah tipe non magnetik.

3      Tipe J (Iron / Constantan)
Rentangnya terbatas (40 hingga +750 °C) membuatnya kurang populer dibanding tipe K
Tipe J memiliki sensitivitas sekitar ~52 µV/°C

4      Tipe N (Nicrosil (Ni-Cr-Si alloy) / Nisil (Ni-Si alloy))
Stabil dan tahanan yang tinggi terhadap oksidasi membuat tipe N cocok untuk pengukuran suhu yang tinggi tanpa platinum. Dapat mengukur suhu di atas 1200 °C. Sensitifitasnya sekitar 39 µV/°C pada 900 °C, sedikit di bawah tipe K. Tipe N merupakan perbaikan tipe K
Termokopel tipe B, R, dan S adalah termokopel logam mulia yang memiliki karakteristik yang hampir sama. Mereka adalah termokopel yang paling stabil, tetapi karena sensitifitasnya rendah (sekitar 10 µV/°C) mereka biasanya hanya digunakan untuk mengukur temperatur tinggi (>300 °C).

    Type B (Platinum-Rhodium/Pt-Rh)
Cocok mengukur suhu di atas 1800 °C. Tipe B memberi output yang sama pada suhu 0 °C hingga 42 °C sehingga tidak dapat dipakai di bawah suhu 50 °C.

6      Type R (Platinum /Platinum with 7% Rhodium)
Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum.

    Type S (Platinum /Platinum with 10% Rhodium)
Cocok mengukur suhu di atas 1600 °C. sensitivitas rendah (10 µV/°C) dan biaya tinggi membuat mereka tidak cocok dipakai untuk tujuan umum. Karena stabilitasnya yang tinggi Tipe S digunakan untuk standar pengukuran titik leleh emas (1064.43 °C).

    Type T (Copper / Constantan)
Cocok untuk pengukuran antara 200 to 350 °C. Konduktor positif terbuat dari tembaga, dan yang negatif terbuat dari constantan. Sering dipakai sebagai alat pengukur alternatif sejak penelitian kawat tembaga. Type T memiliki sensitifitas ~43 µV/°C



Penggunaan Termokopel
Termokopel paling cocok digunakan untuk mengukur rentangan suhu yang luas, hingga 2300°C. Sebaliknya, kurang cocok untuk pengukuran dimana perbedaan suhu yang kecil harus diukur dengan akurasi tingkat tinggi, contohnya rentang suhu 0--100 °C dengan keakuratan 0.1 °C. Untuk aplikasi ini, Termistor dan RTD lebih cocok. Contoh Penggunaan Termokopel yang umum antara lain :
  • Industri besi dan baja
  • Pengaman pada alat-alat pemanas
  • Untuk termopile sensor radiasi
  • Pembangkit listrik tenaga panas radioisotop, salah satu aplikasi termopile.

Penemuan Seebeck ini memberikan inspirasi pada Jean Charles Peltier untuk melihat kebalikan dari fenomena tersebut. Dia mengalirkan listrik pada dua buah logam yang direkatkan dalam sebuah rangkaian. Ketika arus listrik dialirkan, terjadi penyerapan panas pada sambungan kedua logam tersebut dan pelepasan panas pada sambungan yang lainnya. Pelepasan dan penyerapan panas ini saling berbalik begitu arah arus dibalik. Penemuan yang terjadi pada tahun 1934 ini kemudian dikenal dengan efek Peltier. Sir William Thomson, menemukan arah arus mengalir dari titik panas ke titik dingin dan sebaliknya. Efek Seebeck, Peltier, dan Thomson inilah yang kemudian menjadi dasar pengembangan teknologi termoelektrik.

SENSOR PHOTODIODA



SENSOR PHOTODIODA




Sensor photo dioda merupakan dioda yang peka terhadap cahaya, sensor photodioda akan mengalami perubahan resistansi pada saat menerima intensitas cahaya dan akan mengalirkan arus listrik secara forward sebagaimana dioda pada umumnya. Sensor photodioda adalah salah satu jenis sensor peka cahaya (photodetector). Jenis sensor peka cahaya lain yang sering digunakan adalah phototransistor. Photodioda akan mengalirkan arus yang membentuk fungsi linear terhadap intensitas cahaya yang diterima. Arus ini umumnya teratur terhadap power density (Dp). Perbandingan antara arus keluaran dengan power density disebut sebagai current responsitivity. Arus yang dimaksud adalah arus bocor ketika photodioda tersebut disinari dan dalam keadaan dipanjar mundur. Tanggapan frekuensi sensor photodioda tidak luas. Dari rentang tanggapan itu, sensor photodioda memiliki tanggapan paling baik terhadap cahaya infra merah, tepatnya pada cahaya dengan panjang gelombang sekitar 0,9 µm. Kurva tanggapan sensor photodioda ditunjukkan pada gambar berikut.




Hubungan antara keluaran sensor fotodioda dengan intensitas cahaya yang diterimanya ketika dipanjar mundur adalah membentuk suatu fungsi yang linier. Hubungan antara keluaran sensor photodioda dengan intensitas cahaya ditunjukkan pada gambarberikut. Hubungan Keluaran Photodioda Dengan Intensitas Cahaya


Sebagai contoh aplikasi photodioda dapat digunakan sebagai sensor api. Penggunaan sensor photodioda sebagai pendeteksi keberadaan api didasarkan pada fakta bahwa pada nyala api juga terpancar cahaya infra merah. Hal ini tidak dapat dibuktikan dengan mata telanjang karena cahaya infra merah merupakan cahaya tidak tampak, namun keberadaan cahaya infra merah dapat dirasakan yaitu ketika ada rasa hangat atau panas dari nyala api yang sampai ke tubuh kita.

PRINSIP KERJA PHOTODIODA
Photodioda dibuat dari semikonduktor dengan bahan yang populer adalah silicon ( Si) atau galium arsenida ( GaAs), dan yang lain meliputi InSb, InAs, PbSe. Material ini menyerap cahaya dengan karakteristik panjang gelombang mencakup: 2500 Å – 11000 Å untuk silicon, 8000 Å – 20,000 Å untuk GaAs. Ketika sebuah photon (satu satuan energi dalam cahaya) dari sumber cahaya diserap, hal tersebut membangkitkan suatu elektron dan menghasilkan sepasang pembawa muatan tunggal, sebuah elektron dan sebuah hole, di mana suatu hole adalah bagian dari kisi-kisi semikonduktor yang kehilangan elektron. Arah Arus yang melalui sebuah semikonduktor adalah kebalikan dengan gerak muatan pembawa.cara tersebut didalam sebuah photodiode digunakan untuk mengumpulkan photon – menyebabkan pembawa muatan (seperti arus atau tegangan) mengalir/terbentuk di bagian-bagian elektroda.
Prinsip kerja photodioda :
  • Cahaya yang diserap oleh photodiode
  • Terjadinya pergeseran foton
  • Menghasilkan pasangan electron-hole dikedua sisi
  • Electron menuju [+] sumber  & hole menuju [-] sumber
  • Sehingga arus akan mengalir di dalam rangkaian

KARAKTERISTIK PHOTODIODA
  • Photodioda mempunyai respon 100 kali lebih cepat daripada phototransistor
  • Dikemas dengan plastik transparan yang juga berfungsi sebagai lensa. Lensa tsb lebih dikenal sebagai ‘lensa fresnel’ dan ‘optical filter’
  • Penerima infra merah juga dipengaruhi oleh ‘active area’ dan ‘respond time’