Jumat, 20 Juni 2014

SENSOR OPTIK 

( CAHAYA )



Sensor dan transduser merupakan peralatan atau komponen yang mempunyai peranan penting dalam sebuah sistem pengaturan otomatis. Ketepatan dan kesesuaian dalam memilih sebuah sensor akan sangat menentukan kinerja dari sistem pengaturan secara otomatis. Besaran masukan pada kebanyakan sistem kendali adalah bukan besaran listrik, seperti besaran fisika, kimia, mekanis dan sebagainya. Untuk memakaikan besaran listrik pada sistem pengukuran, atau sistem manipulasi atau sistem pengontrolan, maka biasanya besaran yang bukan listrik diubah terlebih dahulu menjadi suatu sinyal listrik melalui sebuah alat yang disebut transducer
D Sharon, dkk (1982), mengatakan sensor adalah suatu peralatan yang berfungsi untuk mendeteksi gejala-gejala atau sinyal-sinyal yang berasal dari perubahan suatu energi seperti energi listrik, energi fisika, energi kimia, energi biologi, energi mekanik dan sebagainya..
Contoh; Camera sebagai sensor penglihatan, telinga sebagai sensor pendengaran, kulit sebagai sensor peraba, LDR (light dependent resistance) sebagai sensor cahaya, dan lainnya.
William D.C, (1993), mengatakan transduser adalah sebuah alat yang bila digerakan oleh suatu energi di dalam sebuah sistem transmisi, akan menyalurkan energi tersebut dalam bentuk yang sama atau dalam bentuk yang berlainan ke sistem transmisi berikutnya”. Transmisi energi ini bisa berupa listrik, mekanik, kimia, optic (radiasi) atau thermal (panas).
Contoh; generator adalah transduser yang merubah energi mekanik menjadi energi listrik, motor adalah transduser yang merubah energi listrik menjadi energi mekanik, dan sebagainya.
Sensor optic atau cahaya adalah sensor yang mendeteksi perubahan cahaya dari sumber cahaya, pantulan cahaya ataupun bias cahaya yang mengenai benda atau ruangan.
Contoh; photo cell, photo transistor, photo diode, photo voltaic, photo multiplier, pyrometer optic, dsb.
Elemen-elemen sensitive cahaya merupakan alat terandalkan untuk mendeteksi energi cahaya. Alat ini melebihi sensitivitas mata manusia terhadap semua spectrum warna dan juga bekerja dalam daerah-daerah ultraviolet dan infra merah.
Energi cahaya bila diolah dengan cara yang tepat akan dapat dimanfaatkan secara maksimal untuk teknik pengukuran, teknik pengontrolan dan teknik kompensasi.
Penggunaan praktis alat sensitif cahaya ditemukan dalam berbagai pemakaian teknik seperti halnya :
 Tabung cahaya atau fototabung vakum (vaccum type phototubes), paling menguntungkan digunakan dalam pemakaian yang memerlukan pengamatan pulsa cahaya yang waktunya singkat, atau cahaya yang dimodulasi pada frekuensi yang relative tinggi.
 Tabung cahaya gas (gas type phototubes), digunakan dalam industri gambar hidup sebagai pengindra suara pada film.
 Tabung cahaya pengali atau pemfotodarap (multiplier phottubes), dengan kemampuan penguatan yang sangat tinggi, sangat banyak digunakan pada pengukuran fotoelektrik dan alat-alat kontrol dan juga sebagai alat cacah kelipan (scientillation counter).
 Sel-sel fotokonduktif (photoconductive cell), juga disebut tahanan cahaya (photo resistor) atau tahanan yang bergantung cahaya (LDR-light dependent resistor), dipakai luas dalam industri dan penerapan pengontrolan di laboratorium.
 Sel-sel foto tegangan (photovoltatic cells), adalah alat semikonduktor untuk mengubah energi radiasi daya listrik. Contoh yang sangat baik adalah sel matahari (solar cell) yang digunakan dalam teknik ruang angkasa.

Jenis-jenis Divais sensor optis
1. Divais Elektrooptis
Cahaya merupakan gelombang elektromagnetis (EM) yang memiliki spectrum warna yang berbeda satu sama lain. Setiap warna dalam spectrum mempunyai energi, frekuensi dan panjang gelombang yang berbeda. Hubungan spektrum optis dan energi dapat dilihat pada formula dan gambar berikut.
Energi photon (Ep) setiap warna dalam spektrum cahaya nilainya adalah:

Dimana :
Wp = energi photon (eV)
h = konstanta Planck’s (6,63 x 10-34 J-s)
c = kecepatan cahaya, Electro Magnetic (2,998 x 108 m/s)
λ = panjang gelombang (m)
f = frekuensi (Hz)

Frekuensi foton bergantung pada energi yang dilepas atau diterima saat elektron berpindah tingkat energinya. Spektrum gelombang optis diperlihatkan pada gambar berikut, spektrum warna cahaya terdiri dari ultra violet dengan panjang gelombang 200 sampai 400 nanometer (nm), visible adalah spektrum warna cahaya yang dapat dilihat oleh mata dengan panjang gelombang 400 sampai 800 nm yaitu warna violet, hijau dan merah, sedangkan spektrum warna infrared mulai dari 800 sampai 1600 nm adalah warna cahaya dengan frekuensi terpendek.



Sumber-sumber energi photon:
Bahan-bahan yang dapat dijadikan sumber energi selain matahari adalah antara lain:
 Incandescent Lamp yaitu lampu yang menghasilkan energi cahaya dari pijaran filament bertekanan tinggi, misalnya lampu mobil, lampu spot light, lampu flashlight.
 Energi Atom, yaitu memanfaatkan loncatan atom dari valensi energi 1 ke level energi berikutnya.
 Fluorescense, yaitu sumber cahaya yang berasal dari perpendaran bahan fluorescence yang terkena cahaya tajam. Seperti Layar Osciloskop
 Sinar LASER adalah sumber energi mutakhir yang dimanfaatkan untuk sebagai cahaya dengan kelebihannya antara lain : monochromatic (cahaya tunggal atau membentuk garis lurus), coherent (cahaya seragam dari sumber sampai ke beban sama), dan divergence (simpangan sangat kecil yaitu 0,001 radians).

2. Photo Semikonduktor
Divais photo semikonduktor memanfaatkan efek kuantum pada junction, energi yang diterima oleh elektron yang memungkinkan elektron pindah dari ban valensi ke ban konduksi pada kondisi bias mundur.
Bahan semikonduktor seperti Germanium (Ge) dan Silikon (Si) mempunyai 4 buah electron valensi, masing-masing electron dalam atom saling terikat sehingga electron valensi genap menjadi 8 untuk setiap atom, itulah sebabnya kristal silicon memiliki konduktivitas listrik yang rendah, karena setiap electron terikan oleh atom-atom yang berada disekelilingnya. Untuk membentuk semikonduktor tipe P pada bahan tersebut disisipkan pengotor dari unsure golongan III, sehingga bahan tersebut menjadi lebih bermuatan positif, karena terjadi kekosongan electron pada struktur kristalnya.
Bila semikonduktor jenis N disinari cahaya, maka elektron yang tidak terikat pada struktur kristal akan mudah lepas. Kemudian bila dihubungkan semikonduktor jenis P dan jenis N dan kemudian disinari cahaya, maka akan terjadi beda tegangan diantara kedua bahan tersebut. Beda potensial pada bahan ilikon umumnya berkisar antara 0,6 volt sampai 0,8 volt.


Ada beberapa karakteristik dioda foto yang perlu diketahui antara lain:
 Arus bergantung linier pada intensitas cahaya
 Respons frekuensi bergantung pada bahan (Si 900nm, GaAs 1500nm, Ge 2000nm)
 Digunakan sebagai sumber arus
 Junction capacitance turun menurut tegangan bias mundurnya
 Junction capacitance menentukan respons frekuensi arus yang diperoleh



• Rangkaian pengubah arus ke tegangan
Untuk mendapatkan perubahan arus ke tegangan yang dapat dimanfaatkan maka dapat dibuat gambar rangkaian seperti berikut yaitu dengan memasangkan resistor dan op-amp jenis field effect transistor.


3. Photo Transistor
Sama halnya dioda foto, maka transistor foto juga dapat dibuat sebagai sensor cahaya. Teknis yang baik adalah dengan menggabungkan dioda foto dengan transistor foto dalam satu rangkain.
– Karakteristik transistor foto yaitu hubungan arus, tegangan dan intensitas foto
– Kombinasi dioda foto dan transistor dalam satu chip
– Transistor sebagai penguat arus
– Linieritas dan respons frekuensi tidak sebaik dioda foto


4. Sel Photovoltaik
Efek sel photovoltaik terjadi akibat lepasnya elektron yang disebabkan adanya cahaya yang mengenai logam. Logam-logam yang tergolong golongan 1 pada sistem periodik unsur-unsur seperti Lithium, Natrium, Kalium, dan Cessium sangat mudah melepaskan elektron valensinya. Selain karena reaksi redoks, elektron valensilogam-logam tersebut juga mudah lepas olehadanya cahaya yang mengenai permukaan logam tersebut. Diantara logam-logam diatas Cessium adalah logam yang paling mudah melepaskan elektronnya, sehingga lazim digunakan sebagai foto detektor.
Tegangan yang dihasilan oleh sensor foto voltaik adalah sebanding dengan frekuensi gelombang cahaya (sesuai konstanta Plank E = h.f). Semakin kearah warna cahaya biru, makin tinggi tegangan yang dihasilkan. Tingginya intensitas listrik akan berpengaruh terhadap arus listrik. Bila foto voltaik diberi beban maka arus listrik dapat dihasilkan adalah tergantung dari intensitas cahaya yang mengenai permukaan semikonduktor.


Gambar 4.7. Pembangkitan tegangan pada Foto volatik


Berikut karakteristik dari foto voltaik berdasarkan hubungan antara intensitas cahaya dengan arus dan tegangan yang dihasilkan.


Gambar 4.8. (a) & (b) Karakteristik Intensitas vs Arus dan Tegangan
dan (c) Rangakain penguat tegangan.

5. Light Emitting Diode (LED)
– Prinsip kerja kebalikan dari dioda foto
– Warna (panjang gelombang) ditentukan oleh band-gap
– Intensitas cahaya hasil berbanding lurus dengan arus
– Non linieritas tampak pada arus rendah dan tinggi
– Pemanasan sendiri (self heating) menurunkan efisiensi pada arus tinggi


Gambar 4.9. Karakteristik LED

• Karakteristik Arus Tegangan
– Mirip dengan dioda biasa
– Cahaya biru nampak pada tegangan 1,4 – 2,7 volt
– Tegangan threshold dan energi foton naik menurut energi band-gap
– Junction mengalami kerusakan pada tegangan 3 volt
– Gunakan resistor seri untuk membatasi arus/tegangan

6. Photosel
– Konduktansi sebagai fungsi intensitas cahaya masuk
– Resistansi berkisar dari 10MW (gelap) hingga 10W (terang)
– Waktu respons lambat hingga 10ms
– Sensitivitas dan stabilitas tidak sebaik dioda foto
– Untuk ukuran besar lebih murah dari sel fotovoltaik
– Digunakan karena biaya murah



Gambar 4.10. Konstruksi dan Karakteristik Fotosel


7. Photomultiplier
– Memanfaatkan efek fotoelektrik
– Foton dengan nergi lebih tinggi dari workfunction melepaskan elektron dari permukaan katoda
– Elektron dikumpulkan (dipercepat) oleh anoda dengan tegangan (tinggi)
– Multiplikasi arus (elektron) diperoleh dengan dynode bertingkat
– Katoda dibuat dari bahan semi transparan



Gambar 4.11. Konstruksi Photomultiplier

• Rangkaian untuk Photomultiplier
– Perbedaan tegangan (tinggi) tegangan katoda (negatif) dan dynode(positif)
– Beban resistor terhubung pada dynoda
– Common (ground) dihubungkan dengan terminal tegangan positif catu daya
– Rangkaian koverter arus-tegangan dapat digunakan
– Dioda ditempatkan sebagai surge protection


Gambar 4.12. Rangkaian Ekivalen dan uji Photomultiplier

• Pemanfaatan
– Sangat sensitif, dapat digunakan sebagai penghitung pulsa
– Pada beban resistansi rendah 50-1000 W, lebar pulsa tipikal 5-50 ns
– Gunakan peak detektor untuk mengukur tingat energi

• Kerugian
– Mudah rusak bila terekspos pada cahaya berlebih (terlalu sensitif)
– Perlu catu tegangan tinggi
– Mahal


8. Lensa Dioda Photo
– Lensa dimanfaatkan untuk memfokuskan atau menyebarkan cahaya
– Lensa detektor cahaya sebaiknya ditempatkan dalam selonsong dengan filter sehingga hanya menerima cahaya pada satu arah dan panjang gelombang tertentu saja (misal menghindari cahaya lampu TL dan sinar matahari)
– Gunakan modulasi bila interferensi tinggi dan tidak diperlukan sensitivitas tinggi


Gambar 4.13. Kontruksi dan karakteristik lensa dioda foto

9. Pyrometer Optis dan Detektor Radiasi Thermal
– Salah satu sensor radiasi elektro magnetik: flowmeter
– Radiasi dikumpulkan dengan lensa untuk diserap pada bahan penyerap radiasi
– Energi yang terserap menyebabkan pemanasan pada bahan yang kemudian diukur temperaturnya menggunakan thermistor, termokopel dsb
– Sensitivitas dan respons waktu buruk, akurasi baik karena mudah dikalibrasi (dengan pembanding panas standar dari resistor)
– Lensa dapat digantikan dengan cermin

Gambar 4.14. Instalasi Pyrolektrik

– Detektor sejenis: film pyroelektrik
– Dari bahan sejenis piezoelektrik yang menghasilkan tegangan akibat pemanasan
– Hanya ber-respons pada perubahan bukan DC
– Pirometer optik dapat diguanakanuntuk mengukur atau mendeteksi totalradiation dan monochromatic radiation.
10. Isolasi Optis dan Transmiter-Receiver serat optik
– Cahaya dari LED dan diterima oleh dioda foto digunakan sebagai pembawa informasi menggantikan arus listrik
– Keuntungan: isolasi listrik antara dua rangkaian (tegangan tembus hingga 3kV)
– Dimanfaatkan untuk safety dan pada rangkaian berbeda ground
– Hubungan input-output cukup linier, respons frekuensi hingga di atas 1 MHz


Gambar 4.15. Kontruksi dan karakteristik lensa dioda foto



• Rangkaian untuk isolasi elektrik
– Driver: konverter tegangan ke arus, receiver: konverter arus ke tegangan
– Hanya sinyal positif yang ditransmisikan
– Dioda dan resistor digunakan untuk membatasi arus
– Penguatan keseluruhan bergantung temperatur (tidak ada umpan balik)
– Untuk komunikasi dengan serat optik media antara LED dan dioda foto dihubungan dengan serat optik

Tidak ada komentar:

Posting Komentar